0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i28[0] > 0 →* TRUE)∧(i28[0] →* i28[1])∧(i24[0] →* i24[1]))
(1) -> (0), if ((i24[1] + i28[1] / 2 →* i24[0])∧(i28[1] / 2 →* i28[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i28[0] > 0 →* TRUE)∧(i28[0] →* i28[1])∧(i24[0] →* i24[1]))
(1) -> (0), if ((i24[1] + i28[1] / 2 →* i24[0])∧(i28[1] / 2 →* i28[0]))
(1) (>(i28[0], 0)=TRUE∧i28[0]=i28[1]∧i24[0]=i24[1] ⇒ LOAD219(i28[0], i24[0])≥NonInfC∧LOAD219(i28[0], i24[0])≥COND_LOAD219(>(i28[0], 0), i28[0], i24[0])∧(UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥))
(2) (>(i28[0], 0)=TRUE ⇒ LOAD219(i28[0], i24[0])≥NonInfC∧LOAD219(i28[0], i24[0])≥COND_LOAD219(>(i28[0], 0), i28[0], i24[0])∧(UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥))
(3) (i28[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i28[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(4) (i28[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i28[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(5) (i28[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i28[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(6) (i28[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥)∧0 = 0∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i28[0] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(7) (i28[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥)∧0 = 0∧[(3)bni_11 + (-1)Bound*bni_11] + [bni_11]i28[0] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(8) (>(i28[0], 0)=TRUE∧i28[0]=i28[1]∧i24[0]=i24[1]∧+(i24[1], /(i28[1], 2))=i24[0]1∧/(i28[1], 2)=i28[0]1 ⇒ COND_LOAD219(TRUE, i28[1], i24[1])≥NonInfC∧COND_LOAD219(TRUE, i28[1], i24[1])≥LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))∧(UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥))
(9) (>(i28[0], 0)=TRUE ⇒ COND_LOAD219(TRUE, i28[0], i24[0])≥NonInfC∧COND_LOAD219(TRUE, i28[0], i24[0])≥LOAD219(/(i28[0], 2), +(i24[0], /(i28[0], 2)))∧(UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥))
(10) (i28[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧[1 + (-1)bso_20] + i28[0] + [-1]max{i28[0], [-1]i28[0]} ≥ 0)
(11) (i28[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧[1 + (-1)bso_20] + i28[0] + [-1]max{i28[0], [-1]i28[0]} ≥ 0)
(12) (i28[0] + [-1] ≥ 0∧[2]i28[0] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(13) (i28[0] + [-1] ≥ 0∧[2]i28[0] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧0 = 0∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)
(14) (i28[0] ≥ 0∧[2] + [2]i28[0] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧0 = 0∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)
(15) (i28[0] ≥ 0∧[1] + i28[0] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧0 = 0∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)
POL(TRUE) = [3]
POL(FALSE) = 0
POL(LOAD219(x1, x2)) = [2] + x1
POL(COND_LOAD219(x1, x2, x3)) = [2] + x2
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(2) = [2]
POL(+(x1, x2)) = x1 + x2
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(/(x1, 2)1 @ {LOAD219_2/0}) = max{x1, [-1]x1} + [-1]
POL(/(x1, 2)1 @ {LOAD219_2/1, +_2/1}) = [-1]max{x1, [-1]x1} + [1]
COND_LOAD219(TRUE, i28[1], i24[1]) → LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))
LOAD219(i28[0], i24[0]) → COND_LOAD219(>(i28[0], 0), i28[0], i24[0])
COND_LOAD219(TRUE, i28[1], i24[1]) → LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))
LOAD219(i28[0], i24[0]) → COND_LOAD219(>(i28[0], 0), i28[0], i24[0])
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |