(0) Obligation:

JBC Problem based on JBC Program:
No human-readable program information known.

Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: example_2/Test

(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 84 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load219(i28, i24) → Cond_Load219(i28 > 0, i28, i24)
Cond_Load219(TRUE, i28, i24) → Load219(i28 / 2, i24 + i28 / 2)
The set Q consists of the following terms:
Load219(x0, x1)
Cond_Load219(TRUE, x0, x1)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
Load219(i28, i24) → Cond_Load219(i28 > 0, i28, i24)
Cond_Load219(TRUE, i28, i24) → Load219(i28 / 2, i24 + i28 / 2)

The integer pair graph contains the following rules and edges:
(0): LOAD219(i28[0], i24[0]) → COND_LOAD219(i28[0] > 0, i28[0], i24[0])
(1): COND_LOAD219(TRUE, i28[1], i24[1]) → LOAD219(i28[1] / 2, i24[1] + i28[1] / 2)

(0) -> (1), if ((i28[0] > 0* TRUE)∧(i28[0]* i28[1])∧(i24[0]* i24[1]))


(1) -> (0), if ((i24[1] + i28[1] / 2* i24[0])∧(i28[1] / 2* i28[0]))



The set Q consists of the following terms:
Load219(x0, x1)
Cond_Load219(TRUE, x0, x1)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD219(i28[0], i24[0]) → COND_LOAD219(i28[0] > 0, i28[0], i24[0])
(1): COND_LOAD219(TRUE, i28[1], i24[1]) → LOAD219(i28[1] / 2, i24[1] + i28[1] / 2)

(0) -> (1), if ((i28[0] > 0* TRUE)∧(i28[0]* i28[1])∧(i24[0]* i24[1]))


(1) -> (0), if ((i24[1] + i28[1] / 2* i24[0])∧(i28[1] / 2* i28[0]))



The set Q consists of the following terms:
Load219(x0, x1)
Cond_Load219(TRUE, x0, x1)

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD219(i28, i24) → COND_LOAD219(>(i28, 0), i28, i24) the following chains were created:
  • We consider the chain LOAD219(i28[0], i24[0]) → COND_LOAD219(>(i28[0], 0), i28[0], i24[0]), COND_LOAD219(TRUE, i28[1], i24[1]) → LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2))) which results in the following constraint:

    (1)    (>(i28[0], 0)=TRUEi28[0]=i28[1]i24[0]=i24[1]LOAD219(i28[0], i24[0])≥NonInfC∧LOAD219(i28[0], i24[0])≥COND_LOAD219(>(i28[0], 0), i28[0], i24[0])∧(UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(i28[0], 0)=TRUELOAD219(i28[0], i24[0])≥NonInfC∧LOAD219(i28[0], i24[0])≥COND_LOAD219(>(i28[0], 0), i28[0], i24[0])∧(UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i28[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i28[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i28[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i28[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i28[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i28[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (6)    (i28[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥)∧0 = 0∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i28[0] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (i28[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥)∧0 = 0∧[(3)bni_11 + (-1)Bound*bni_11] + [bni_11]i28[0] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)







For Pair COND_LOAD219(TRUE, i28, i24) → LOAD219(/(i28, 2), +(i24, /(i28, 2))) the following chains were created:
  • We consider the chain LOAD219(i28[0], i24[0]) → COND_LOAD219(>(i28[0], 0), i28[0], i24[0]), COND_LOAD219(TRUE, i28[1], i24[1]) → LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2))), LOAD219(i28[0], i24[0]) → COND_LOAD219(>(i28[0], 0), i28[0], i24[0]) which results in the following constraint:

    (8)    (>(i28[0], 0)=TRUEi28[0]=i28[1]i24[0]=i24[1]+(i24[1], /(i28[1], 2))=i24[0]1/(i28[1], 2)=i28[0]1COND_LOAD219(TRUE, i28[1], i24[1])≥NonInfC∧COND_LOAD219(TRUE, i28[1], i24[1])≥LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))∧(UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥))



    We simplified constraint (8) using rules (III), (IV) which results in the following new constraint:

    (9)    (>(i28[0], 0)=TRUECOND_LOAD219(TRUE, i28[0], i24[0])≥NonInfC∧COND_LOAD219(TRUE, i28[0], i24[0])≥LOAD219(/(i28[0], 2), +(i24[0], /(i28[0], 2)))∧(UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (i28[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧[1 + (-1)bso_20] + i28[0] + [-1]max{i28[0], [-1]i28[0]} ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (i28[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧[1 + (-1)bso_20] + i28[0] + [-1]max{i28[0], [-1]i28[0]} ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (i28[0] + [-1] ≥ 0∧[2]i28[0] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (12) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (13)    (i28[0] + [-1] ≥ 0∧[2]i28[0] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧0 = 0∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (i28[0] ≥ 0∧[2] + [2]i28[0] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧0 = 0∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (15)    (i28[0] ≥ 0∧[1] + i28[0] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧0 = 0∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD219(i28, i24) → COND_LOAD219(>(i28, 0), i28, i24)
    • (i28[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD219(>(i28[0], 0), i28[0], i24[0])), ≥)∧0 = 0∧[(3)bni_11 + (-1)Bound*bni_11] + [bni_11]i28[0] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)

  • COND_LOAD219(TRUE, i28, i24) → LOAD219(/(i28, 2), +(i24, /(i28, 2)))
    • (i28[0] ≥ 0∧[1] + i28[0] ≥ 0 ⇒ (UIncreasing(LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))), ≥)∧0 = 0∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]i28[0] ≥ 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = [3]   
POL(FALSE) = 0   
POL(LOAD219(x1, x2)) = [2] + x1   
POL(COND_LOAD219(x1, x2, x3)) = [2] + x2   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(2) = [2]   
POL(+(x1, x2)) = x1 + x2   

Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)

POL(/(x1, 2)1 @ {LOAD219_2/0}) = max{x1, [-1]x1} + [-1]   
POL(/(x1, 2)1 @ {LOAD219_2/1, +_2/1}) = [-1]max{x1, [-1]x1} + [1]   

The following pairs are in P>:

COND_LOAD219(TRUE, i28[1], i24[1]) → LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))

The following pairs are in Pbound:

LOAD219(i28[0], i24[0]) → COND_LOAD219(>(i28[0], 0), i28[0], i24[0])
COND_LOAD219(TRUE, i28[1], i24[1]) → LOAD219(/(i28[1], 2), +(i24[1], /(i28[1], 2)))

The following pairs are in P:

LOAD219(i28[0], i24[0]) → COND_LOAD219(>(i28[0], 0), i28[0], i24[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

/1

(10) Complex Obligation (AND)

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD219(i28[0], i24[0]) → COND_LOAD219(i28[0] > 0, i28[0], i24[0])


The set Q consists of the following terms:
Load219(x0, x1)
Cond_Load219(TRUE, x0, x1)

(12) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(13) TRUE

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph is empty.

The set Q consists of the following terms:
Load219(x0, x1)
Cond_Load219(TRUE, x0, x1)

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.

(16) TRUE